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ABSTRACT 

An approximation for conditional Wiener integrals, similar to Cameron’s “Simpson’s 
Rule” for unconditional Wiener integrals, is developed. An alternate derivation of 
Konheim and Miranker’s prescription for the development of higher-order formulas 
is presented. 

I. INTRODDCTI~N 

With the growing power of computing machinery, the connection between the 
diffusion equation and the Schrodinger equation is being exploited for numerical 
computations. Our particular interest has been in quantum statistical mechanical 
computations which use this connection [l]-[3], others have used it for the com- 
putation of atomic wavefunctions [4]. In one instance this is the only method 
which has provided useful numerical solutions; namely, the three-particle com- 
putations on helium. In the case of the quantum statistical mechanical computations 
the Wiener integral is the mathematical foundation supporting the numerical work 
which is, primarily, an evaluation of a certain Wiener integral. Thus an interest 
has developed in techniques for making this evaluation and here certain of these 
techniques are discussed. 

There are two rather distinct aspects to these computations: one involves a 
direct approximation of a Wiener integral; the other involves a Monte Carlo 
sampling procedure. Here attention is directed at the first of these. One method for 
direct approximation of a Wiener integral is based on a functional Taylor series 
expansion [5], a form of which is known as the Wigner-Kirkwood expansion. 
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This is the method which has been used in the three-particle computations. Another 
method is a “Simpson rule” for Wiener integrals developed by Cameron [6] and 
a generalization of this developed by Konheim and Miranker [7]. The Simpson rule 
approach does not seem to have been employed in any interesting physics compu- 
tations. 

Cameron’s Simpson rule cannot be used directly for the type of Wiener integral 
which arises in the quantum statistical mechanical computations. Here a simple 
extension of Cameron’s idea is used to obtain a corresponding rule for these 
computations. The application of the Konheim-Miranker generalization is also 
described here along with an alternate derivation of their result. 

II. NOTATION AND BACKGROUND 

Let r(7) denote a continuous function of T, with r(0) = 0; r(7) is called the path 
variable, or simply the path, and T is called the time variable, or simply the time. 
The function r(7; n) is regarded as an approximation of r(r) and is, in particular, 
a piecewise-straight function of time with breaks in slope at 

To = 0, 7 n= BY 

r(0) = r(0; n) = 0, r(P) = r@; 4 = R, 
(2) 

are regarded as constants in the limiting process below, and the notation 

ri = r(Ti ; n) (3) 

is used. The conditional Wiener integral of a functional of the path, say, F[r(T)], 
is defined as the limit 

(4) 

where 

dp,, = (27~p)‘/~ exp (5) Fl /&(T~+~ - T&1/2 exp ( ~~~~~~~)I p: dri . (5) 

The measure dp, is a joint Gaussian probability and the normalization is such that 

E{l 1 r@) = R} = 1. (6) 
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Loosely speaking, this integral is an average of the functional F[r(7)], where the 
average is taken over all continuous functions r(7) with r(0) = 0, $3) = R and 
the infinitesimals r(T + 6) - r(T) are governed by the joint Gaussian distribution 
shown in Eq. (5). Sometimes the functional depends on other functions of the time 
as well as the path, as in 

Fbr(T) + g(dl, (7) 

where r(T) is the path, g(T) is some function of time and a is some constant. In 
such a case the measure is still defined as in Eq. (5); confusion as to which variable 
is the path in an expression, such as 

E{Fb’(T) + g(T)11 r@> = RI, (8) 

can be avoided by noting that the end-point condition, here r(p) = R, always 
exhibits the path variable on the left of the equality. The limit in Eq. (4) is inde- 
pendent of the manner of subdivision of the time interval, so long as the points of 
subdivision become dense as n --f co, but for convenience 

Ti+l - Ti = p/sin (9) 

is assumed in the discussion below. 
Several properties of the conditional Wiener integral which play an important 

role in these computations are reviewed below. The first of these concerns a change 
in the time scale. Suppose that a new time variable, T’, is defined by the relation 

then 
7’ = PT, 

E{F[r(T)] 1 r@) = R} = E &j r(T’)] I r@‘) = p1i2R/. (11) 

The second of these properties concerns a change in the path variable. Suppose 
that a new path variable, r’(T), is defined by the relation 

r’(T) = r(T) + A f TB, (12) 
then 

E{F[r(T)] 1 r(p) = R} = E{F[r’(T) - A - TB] I r’(p) = A $ /lB + R}. (13) 

These two properties can be combined to reduce all conditional Wiener integrals 
to a standard form in which the time interval is (0,l) and the end-point condition 
is r(1) = 0; thus, 

E{F[r(T)]j r(p) = R} = E{F[/P2r(T) + TR]~ r(1) = O}. (14) 
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A third property concerns the conditional Wiener integral of functionals of the 
form flTSI r(7J. The basic relations are 

E 2 Y(TJ / r(1) = 0 = C fl b(~, , TJ, 
! i 

(16) 
i=l 

QT, ,Tk) = TiU - 4, (Ti < d (17) 

where the sum and product on the right of Eq. (16) are to be understood as follows: 
let 71, 72 Y..., 729 be arranged into p pairs; then the product contains p factors of 
the form b(Ti , Tk), one for each pair; the sum is understood to extend over all such 
pairings; no ri appears in more than one pair and the pair (TV, TJ is not dis- 
tinguished from (Tk 

p=2is 
Ti). To clarify the interpretation of Eq. (16) the result for 

r(1) = O} 

74) + ~(TI , Tz)b(Tz 3 74) + b(Q , TddTz , 73) (18) 

= Tl(l - Tz)Tdl - 74) + Tl(l - 73)72(1 - 74) + Tl(l - T&2(1 - Tz), 

where T1 < T2 < T2 < Tq is understood. 
Our interest is centered on functionals of the form 

F[r(T)] = eXp (-j: v(r(T)) dT). 

The reason for this is that the conditional Wiener integral of this functional is 
known [8] to be the Green’s function for the Bloch equation 

H+ = -a+jag. 

More specifically, let H be the Hamiltonian operator 

H = - a -$ + V(r); 

then 

(2?~@~/~ exp ( - (R’ GRP ) E{F[r(T) + R] 1 r(P) T 

= C Y~(R)Yi(R’)e-BE6, 

cm) 

(21) 

R’ - R} 

(22) 
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where the functional is given by Eq. (19) and {YJ and {&} are the eigenvectors 
and eigenvalues of the Hamiltonian operator, Eq. (21). In the context of quantum 
statistics, Eq. (22) is the basic formula linking a conditional Wiener integral with 
the density matrix elements. Although the formulas displayed here apply to a 
one-dimensional, one-particle problem, they apply equally well, mutatis mutandis, 
to a three-dimensional, N-particle system; the appropriate equations for this 
extension have been displayed elsewhere [3]. For simplicity most of the discussion 
below applies to the one-dimensional (and one-particle) case. 

The functional in Eq. (19) can be written 

n-1 

m(41 = n fiM4 
i=O 

J;r[r(-r)] = exp (-- rTi” V(Y(T)) dT). (24) 

This property has an extremely useful consequence; it allows the conditional 
Wiener integral to be similarly factored, in particular 

where: dp, is defined in Eq. (5); Ti = 0, 7i+l = 1 and d(+z) replaces dT in fi. 
The important feature in this result is the factor l/n112 making it possible to treat 
r(T)/#’ as small for large n and to use an expansion in powers of this quantity. 
This statement must be read in a probabilistic context; r(T) can become arbitrarily 
large, but the measure of the set of paths for which 1 r(T)1 > A4 for some 7 can be 
made as small as we please by making A4 sufficiently large. In computations the 
result expressed in Eq. (25) is used in the following way: an approximation, based 
on the fact that r(-r)/n1/2 is small, is constructed for each factor 

E Ih [A r(T) + ri(l - T) + ri+lT] / r(l) = 01, (26) 

and Monte Carlo sampling is then used to evaluate the n-fold Riemann integral. 
Here we are concerned with the first part of this process, namely the determination 
of a suitable approximation for the factor Eq. (26). 
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III. SIMPSON RULE FOR CONDITIONAL WIENER INTEGRALS 

Following the approach of Cameron [6], we seek an approximation for the 
conditional Wiener integral which depends on the choice of a function p(u, T) 
having the property that 

W[x(~)l I 41) = 01 = ; j',/bh 41 du, (27) 

when the functional is a polynomial of some degree, that is, when 

f[x(T)l = ho + j: X(T)h,(T) dT + j: j: X(T,)X(T,)h,(T, , 72) dT1 dT2 

CW 

+ ‘** + j: j: *** j: X(T~)X(T~) .** X(T,&(T, , TV ,..., T,) dT1 dT2 *a- dTn. 

In Eq. (27) it is seen that the essential computation features are that the path is 
replaced by a function of two variables, u and 7, and the Wiener integration is 
replaced by integration (Lebesgue) with respect to the variable u. 

When the functional is a polynomial it follows, by an exchange of order of 
integration, that 

E{f[X(T)l I X(l) = o> = h, + j’ E{X(T) 1 X(1) = o} h,(T) d7 
0 

+ j’ j1 &(‘Q)X(T,) 1 X(l) = o> h,(T, , 3) dT&z 0 0 
+ *a* + jl j: *** ~~E{X(T~)X(TJ a.* x(7,) I x(1) = 0) 

hn(T1 , 71 ,..., 7,) dT1 dT2 *** dTn . (29) 

The exchange of the order of the Wiener integration and the T-integrations is 
justified as follows: for any k, h&(7, , TV ,..., Tk) is a constant with respect to the 
Wiener integration, and X(T~) x(T~) ..* X(Tk) is integrable in the product space 
composed of the domain of the paths and the domains of T1 , r2 ,..., TV ; con- 
SeqUeIItIy, X(T1)X(T2) '-' X(Tk)hk(T1 , T2 ,..., Tk) is integrable in the product space 
and Fubini’s theorem allows exchange of the order of integration. As a consequence 
of Eq. (29) we can formulate the property described in Eq. (27) by 

‘%(T,)X(T,) *** X(G) 1 X(l) = o> = ; s’, p(U, T&(U, T2) -.* p(U, Tk) du, (30) 
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for k = 1, 2,..., n. The values of these Wiener integrals are well known and were 
displayed earlier in Eqs. (15) and (16). 

Now consider the function 

I -rwhenr <uandu 20, 
p(u, T) = 1 - Q- when T > u and u >, 0, 

-p(-u, T) when u < 0. 

It is easy to verify the following results: 

1 1 
2 j- ph 4 dzJ = 0, 

1 

; jl ,+, Q)P(% 3) du = Tdl - 3) (71 < 5)~ 
1 

(31) 

(32) 

(33) 

(34) 

; j’_ P(U, +‘(U, Ta)P(u, T&b4 Td du 
1 

= T1(l - T4)(l - 2T2 - T3 + 37273) (71 < 7% < T3 < 74). (35) 

Thus Eq. (30) is satisfied for k < 3, and we conclude that p(u, t), defined by 
Eq. (31), will satisfy Eq. (27) when the functional is a polynomial of degree three; 
also, it will not be satisfied when the functional is a polynomial of degree four. 
The analogy with the Simpson rule for Riemann integrals is clear, and it is for this 
reason that we follow Cameron and call the approximation 

E{fb(T)l 1 X(l) = o> = ; j)[p(u, T>] du (36) 

the Simpson rule for conditional Wiener integrals, where now the functional is 
arbitrary. 

Since there is nothing to suggest uniqueness for p(u, T), it is natural to ask if 
there is any other p(u, T) satisfying the same conditions. Let us, for example, 
consider 

I 01~ - fll~ when T < u and u >, 0, 
p(u, T) = 01~ - /&T when T > u and u > 0, (37) 

-p(-u, T) when u < 0. 
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This is an obvious generalization of Eq. (31). With this choice of p(u, 7), straight- 
forward integration shows that 

; jy PO4 ~lkJ(% 72) d.4 
1 

= 71(a2 - B2d(a2 - P272> + (011 - PlQN~2 - 8272)(72 - 71) 

+ (011 - P171)(% - /Q-1)(1 - 7219 (38) 

and a comparison with the desired value, ~~(1 - r2), shows that the conditions 

011 = 0, 81 = 1, 012 = 1, B2 = 1 (39) 

are necessary; a trivial alternative is obtained by reversing the signs of oll , ,kJ ,01~ , ,& . 
Thus among functions linear in T, with a single discontinuity, and antisymmetric 
in u, the function defined in Eq. (31) is the only one which yields a Simpson rule. 
Further generalization by adding discontinuities, and replacement of the linear 
function in T by a polynomial of degree greater than one, also does not seem to lead 
to a new Simpson rule. 

Another way to carry out this search is by consideration of the Fourier series 
representation of the path. This representation is [9] 

X(T) = VT f h sin (jr7) 
j=ljr ’ (40) 

where the fi’s are independent Gaussian random variables with mean zero and 
variance one. The sense in which this representation is to be understood is that 

E{~[x(T)] I x(l) = O> = &$ j j .+* If&$ sin (in7;) &&), (41) 

where 

dp&) = fi (2~r-l’~ exp (-532) 45 . 
i=l 

The Fourier series representation of the function p(u, T) defined in Eq. (31) is 

p(u, T> = 
2 f cos~.!U) sin(jnT) (u 2 o>, 

j=l 

-p(-u, T) (u < 0). 

(42) 

(43) 
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The comparison of Eq. (43) with Eq. (40) is interesting. It is seen that the cosine 
functions replace the Gaussian random variables; therefore, it is natural to consider 

q(u, T) = 2 f sinjy) sin (j7r7) 
i=l 

as an alternative to be used in the Simpson rule. It can be shown that [lo] 

tz i cosJy) = -log / 2 sin (25~/2) (, 
3=1 

(44) 

(45) 

where the convergence is uniform on the open interval (0,2). Consequently, ~(u, T) 
may be expressed 

sin ((T + u)5~/2) 
q(uy T, = log sin ((q- - +7/2) ’ (46) 

Now the question is: Are Eqs. (32), (33), and (34) satisfied when p(u, T) is replaced 
by q(u, T) of Eq. (46)? The answer is: Yes. To see this let us note first that the 
integrals 

11 = ; j’, r)(U, 7) du, (47) 

exist since the singularities at u = T and --u = 7 are logarithmic. The function 
q(u, T) is antisymmetric in U; hence 

Zl = I, = 0. (50) 

The evaluation of I, is simplified by making use of the relation 

(l/2) j', &4 T&h 72) du 

where the exchange of limits is allowed by the Lebesgue convergence theorem; 
notice, for instance, that the partial sums on the left of Eq. (45) can be bounded 
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by a function Clog z when z is near zero. Using the expression on the right side 
of Eq. (51) we have 

= g1 (COS(h(T2 - 4) - CWdTl + T2)N/W2. 

The right side of Eq. (52) can be expressed in terms of an integral using 

(52) 

where z > 0; consequently, 

The integrand can be summed [IO], yielding 

cz t (sin(jd))/(j*) = (1 - t)/2, 
3=1 

(54) 

the convergence being uniform on the open interval (0,2); note that the sum 
vanishes at the end points. 

We again use the Lebesgue convergence theorem and take the limit II --+ co first 
and then integrate over t in Eq. (54); this gives, with the help of Eq. (55), 

1, = T1(l - T2). (56) 

Hence ~(u, T) could be used in place of p(u, T) in Eq. (36); however, it appears 
that p(u, T) would be easier to use in computations. Although we have not explored 
the point further, it seems that other such functions could be discovered by this 
line of reasoning; i.e., using orthogonal functions in place of the random variables 
in the series on the right side of Eq. (30) and then summing the series. 

IV. HIGHER RULES FOR CONDITIONAL WIENER INTEGRALS 

Now we turn to the problem of finding an approximation for the Wiener integral 
which is exact for polynomial functionals of degree greater than three. Konheim 
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and Miranker [7] have shown a way to obtain such an approximation; here an 
alternate derivation of their result is presented. Since the discussion is awkward 
to follow because of the combinatorics, it will simplify matters to consider first 
some special cases. 

Let us define 

e4 7) = Cl&l 3 4 + C,P(U, > 71, (57) 

where, on the left, u is short for u1 , uz and on the right, the functions p(ul , T) 
and p(uz , T) are as defined by Eq. (31) and c1 , c2 are certain constants to be 
determined. Now let us try to satisfy 

(58) 

whenf(x(T)) is a polynomial functional of degree five. It is immediately evident 
that Eq. (58) is satisfied Whenf(X(T)) is constant or a product of an odd number 
Of X(T)‘S; nOtiCe that I& T) is antisymmetric in u1 and u2 . COnSeqUently, only 
two cases, Whenf(x(T)) is a product of two X(T)% and Whenf(x(T)) is a product of 
four x(T)‘s, remain to be considered; this yields the conditions 

= ~(TI , T&T ZI , 74) + ~(TI 7 T&T2 , 74) 
+ ~(TI , Td’(% , 7s). (60) 

The integration on the left of Eq. (59) is easily performed and this condition becomes 

Cl2 + c22 = 1. (61) 

With the help of Eq. (57) the integral on the left side of Eq. (60) can be expressed as 

(62) 
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It should be evident from this that the condition expressed by Eq. (60) is satisfied 
when 

Cl4 + $1 = 0, (63) 

and 

Cl c2 
2 2=1 

2' (64) 

Equations (61), (63), and (64) are not independent; from Eq. (61), 

(Cl2 + c2”)” = 1, (65) 

which with Eq. (64) implies that Eq. (63) is satisfied. Now it is easy to see that 
Eqs. (61) and (64) are satisfied if c12 and c22 are the two roots of 

Consequently, 

z2-z++=o. (66) 

Cl 
,-1+i 

--9 2 c2 
2_ l-i 

-- 
2 (67) 

will satisfy the requirements. There is some freedom of choice in c1 and c2 . The 
values assigned to cl2 and c22 can be interchanged without affecting the result, and 
there are two choices for the square root. One assignment is 

Thus it has been shown that 

= d fl /llf(2-1/4 eini8 p(ul , T) + 2-1/4 ecinlS p(u2 , T)) du, du, (69) 

is satisfied whenf(x(7)) is a polynomial of degree five. 
As the second example we consider an approximation which is exact for poly- 

nomials of degree seven. To this end we construct 

G, T> = wh 9 T> + C,&, , T) + ‘%‘(u~ > T), (70) 

analogous to Eq. (57), and attempt to satisfy 

E{&(T)) 1 X(l) = o> = f j; j’ jl f(+, T>> du, fk? d% (71) 
111 
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for polynomials of degree seven. This Ieads to conditions represented by Eqs. (59) 
and (60), mutatis mutandis, and the condition 

where the sum is to be interpreted as in Eq. (16). The new Eq. (59) now yields the 
condition 

c12+c22+c32= 1, (73) 

the new Eq. (60) now yields the pair of conditions 

Cl4 + c2* + c3* = 0, (74) 

c12ca2 + q2ca2 + c22cs2 = 4 ) (75) 

and, finally, the Eq. (72) yields the three conditions 

Cl6 + cz6 + cs6 = 0, (76) 

c14c22 + c12c24 + c,*c,2 + cj2c3* + c2*c32 + cz2c,* = 0, (77) 

1 
Cl c2 c3 

222- 

3! * 

The expressions on the left of Eqs. (73), (75), and (78) are known as the elementary 
symmetric functions of cl2 , c22 , and c32 . Denoting these elemenatry symmetric 
functions by (TV , u2 , and cr3, we have 

Ul = Cl2 + c22 + c32, (79) 

u2 = C12C22 + c12c32 + c22c32, (80) 

us = c,2c22c32. (81) 

By the fundamental theorem on symmetric functions [ll], any symmetric poly- 
nomial in c12, c22, c32 can be expressed in terms of u1 , u2 , and u3 . Therefore, 
among the conditions represented by Eqs. (73)-(78) which must be satisfied, 
Eqs. (73), (75), and (78) form an independent set. In terms of the u’s, the con- 
ditions which must be satisfied are 

Ul = 1, q2 - 2u, = 0, u2 = l/2, 

u13 - 6u,u, + 12u, = 0, UlU2 - 3u3 = 0, u3 = l/3! . 
(82) 
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It is easy to verify that when u1 , o2 , us are given by the first, third, and last of 
these equations, then the remaining ones are satisfied. Finally, observe that the 
polynomial 

23 - q22 + ugz - u3 = 0 (83) 

has roots c 12, cz2, cs2; hence the particular values for c12, cz2, and cs2 which we seek 
are given as the roots of the polynomial 

23 - 22 + (;) z - (&) = 0. 

These values will guarantee that Eq. (71) will be satisfied for polynomial functionals, 
of degree seven. 

Now let us turn to the general problem, namely we seek numbers c1 , c2 ,..., c,, in 

such that 

forf(x(7)) a polynomial functional of degree 2n + 1. 
It is evident from the special cases already considered that we will be led to a 

system of equations based on the even symmetric polynomials of c12, Cam,..., cn2. 
If we denote the kth elementary symmetric function by uk , then this system of 
equations is succinctly expressed by 

Uk = l/k!, k = 1, 2,..., n (87) 

and the requirement that the other symmetric polynomials which arise must 
vanish. The latter requirement is actually unnecessary since Eq. (87) implies that 
this requirement is satisfied. The proof is as follows. The symmetric polynomials 
which are required to vanish are homogeneous of degree n, and have the form 

where at least one 0~~ , say CX~ , must satisfy the inequality 

OIj > 2. (8% 
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Consider the powers of u1 and define @, , Q3 ,. .., @, by 

Ul = Cl2 + c22 + *-. + c,2, 

q2 = 2!0, + CD2 ) 

q3 = 3!a, + @a, 
(90) 

* % = n!u, + @, . 

Since any symmetric polynomial can be expressed in terms of the elementary 
symmetric polynomials, 

and by Eq. (90) 

P(% 2 012 ,**'> 4 =f(u, , 02 ,..*, %A (91) 

PC% , a2 Ye.', 4 = do1 9 @2 ,...Y @d. (92) 

Now because of the inequality, Eq. (89), every term in g(u, , a2 ,..., @,J must 
contain a factor of 0i for some i, otherwise, it would contain a term uln which 
implies a term on the right of Eq. (88) with all 01~ = 1. But Eqs. (87) and (90) imply 

Qi = 0, (i = 2, 3 )...) n), (93) 

hence p(a, , a2 ,..., c+J = 0. This completes the proof. 
Finally, we observe that the polynomial 

p,(z) = zn - qzn-1 + u2zn-2 - **a + (- 1)” 0, (94) 

has roots c12, Cam,..., cn2; hence, by the conditions expressed by Eq. (87), the values 
of c12, c22,..., cn2 we seek are given by the roots of the polynomial 

Pm = 
1 1 z~-z~-~+212~-2-~~~+(-l)~nl. 

It is interesting to observe that p,(z) may be obtained by truncating the power series 
for z”e-lfZ. 
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